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Abstract. A folding potential describing the α-scattering on 16O over a broad energy range 25.8–146.0 MeV
is constructed on the basis of α-like cluster and unclustered-nucleon configurations of 16O. The resulting
potential does not need any renormalization to fit the angular distribution of elastic cross-sections. The
effects of the repulsive part of α-α and α-nucleon interactions are investigated. The analysis suggests that
both the α-α repulsive potential and the unclustered nucleonic configuration in the target are important
to describe the scattering data over a broad range of incident energies. The root-mean-square radius for
the 16O nucleus is deduced.

PACS. 25.55.Ci Elastic and inelastic scattering – 24.10.Ht Optical and diffraction models – 21.60.Gx
Cluster models

1 Introduction

According to the resonating group model [1], the nucle-
ons in a nucleus cluster together in all possible ways with
varying probabilities. The clusters are continually broken
up and reformed in a new way. The total wave function
may be expressed in terms of a series of the cluster wave
functions with appropriate coefficients. Of course, the α-
like cluster is the most likely as it has by far the highest
binding energy and is compact enough to fit in the inter-
nucleon distance in a nucleus [2].

The elastic scattering of α-particles of a few tens of
MeV has been analyzed using the single-folding [3–8] and
the double-folding [9–16] models. The results of these anal-
yses show that a renormalization factor Nr = 1.19–1.39 is
required for the folded potential. The single-folding cal-
culations of Yong-Xu and Qing-Run [3,4] based on the
α-cluster model for the α+16O system give the renormal-
ization factors around Nr = 0.84 which is less than unity.
In the work on the α-elastic scattering on 12C and 16O,
Khallaf et al. [16] have managed to obtain Nr =1 by intro-
ducing additional parameters, βR and βI (for a complex
folded potential), which in effect, normalize the potential.
However, the model seems unsatisfactory for incident en-
ergies less than 52 MeV and, as a consequence, the analysis
omits data in the energy range of 25.4–48.8 MeV, where
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back angle data are available. An intriguing aspect of ob-
taining remarkable fits to the elastic data in the previous
works [6,10,13,14] is the use of energy-dependent renor-
malization factors.

Of the two recent papers using folding model potentials
to fit α-elastic scattering data on 16O, Farid et al. [6] have
analyzed the data in the energy range 32.2–146 MeV em-
ploying two alternative single-folded potentials, one over
α-cluster density distribution and the other over nucleonic
density using an energy-dependent normalization factor
Nr. They left out the elastic-scattering data for the ener-
gies 39.3, 49.5, 69.5 MeV and energies below 32.2 MeV.
In another paper, Khoa [15] has analyzed the angular dis-
tributions of cross-section for three incident energies viz.
54.1, 80.7 and 104 MeV, where data are limited to only
about 100◦ scattering angles for the two latter energies.

Data of the α-16O elastic scattering are available in
the literature [10,12,17–20] over a broad spectrum of in-
cident energies. We shall primarily concentrate on elastic-
scattering data with wide angular distributions. Our aim
is to describe the α-16O elastic-scattering data from 25.4
to 146.0 MeV by a single-folding model, which can gener-
ate α-nucleus potentials that do not need renormalization
at different incident energies. To this end, we take the view
that most of the time, a number of nucleons are primar-
ily in α-like clusters and the rest are in an unclustered
configuration. Thus, in this picture the wave function of a



66 The European Physical Journal A

nucleus can be considered as the product of wave functions
of α-like configurations and those of unclustered nucleonic
configurations. This, as shown below, leads to a sum of two
folding potentials, one convoluted over α-density distribu-
tion and another over nucleonic density distribution.

In the following section we present a theoretical frame-
work for the proposed model, based on a composite distri-
bution of α-like clusters and unclustered nucleons in the
target nucleus, to work out an appropriate folded poten-
tial. The analysis is given in sect. 3. Section 4 deals with
the discussion and conclusions.

2 Formalism

Following the work of [21] and noting that the composite
system of an incident α-particle and a target nucleus hav-
ing A nucleons is in a meta-stable state, its wave function
Ψ at a given time may be expanded in an orthonormal set
Φn as

Ψ (1, . . . , A+ 4) =
∑

n

AnΦn (1, . . . , A+ 4) . (1)

The numbers in parentheses refer to coordinates. The am-
plitude An = (Φn, Ψ) determines the amount of a partic-
ular configuration present in the composite system at a
given time. The integration is over all coordinates. In this
case, Ψ is normalized to (A+ 4), e.g.∑

n

|An|2 = (A+ 4) . (2)

In the model space of target-projectile, both Φn and the
total Hamiltonian H may be expressed in terms of relative
coordinate R of the alpha-target system and the intrinsic
coordinates of nucleons in incident alpha and target nuclei
marked as primes with anti-symmetrization:

Φn =
∑
iβ

fniβ (R)ψni (1′, . . . , A′)

×φnβ

(
(A+ 1)′, . . . , (A+ 4)′

)
(3)

and

H = − �
2

2M
∇2

R +H0 (1′, . . . , A′)

+Hα

(
(A+ 1)′, . . . , (A+ 4)′

)
+Hint

(
R, 1′, . . . , (A+ 4)′

)
. (4)

HereM is the reduced mass. Hint represents the potential
between the nucleons in the incident α-particle and the
nucleons in the target nucleus. Because of the orthonor-
mality condition, one gets the following equation:[

− �
2

2M
(∇2

R+k2
niβ)+Vnniiββ (R)+Knniiββ (R)

]
fniβ(R)

=
∑ [

Vmnijβµ (R) +Kmnijβµ (R)
]
fmiµ (R) . (5)

In eq. (5) the summation on the right side runs over all
cases other than m = n, i = j and µ = β. The potential
Vmnijβµ is given by

Vmnijβµ (R) = (ψniϕnβ ,Hintψmjϕmµ) . (6)

ψni and ϕnβ are, respectively, the wave functions of
H0 and Hα with eigenvalues Eni and Enβ satisfying
�

2k2
niβ/2M = E − Eni − Enβ .
Kmnijβµ, in (5), is the non-local potential originating

from the Pauli principle. If the projectile α is considered as
a boson in isolation, the exchange contributions between
the incident α and α-like as well as single-fermion–like
configurations in the target nucleus may be neglected in
the first approximation. Furthermore, in the absence of
sharp resonances, the energy-averaged contribution of the
coupling terms leads to a complex potential [22–24]. Thus,
the net effect of these coupling terms is to add an imagi-
nary term to the diagonal part of the interaction potential.
In this approximation, by dropping the subscripts and de-
noting the average potential between the projectile α and
the target due to Hint by U(R), eq. (5) can be cast to the
simple form[

− �
2

2M
(∇2 + k2

)
+ U (R)

]
f (R) = 0. (7)

Following eq. (6), one can write

U (R) = Vnniiββ = (ψniϕnβ ,Hintψniϕnβ) . (8)

We assume that (1, 2, . . . , x) nucleons are in cluster-
like state and ((x + 1), . . . , A) in unclustered nucleonic
state in the target. Denoting the c.m. coordinate of the
α-projectile by Rα and the coordinates of the nucleons
in α-like cluster and unclustered nucleons as indexed by
i and j, respectively, one can write (8) in the following
approximate form:

U (R) =

(
ψniϕnβ (Rα) ,

[ x∑
i=1

Hint (R, |ri − Rα|)

+
A∑

j=x+1

Hint (R, |rj − Rα|)
]
ψniϕnβ (Rα)


 . (9)

Approximating the target function by

ψni (1′, . . . , A′) ≈ φα (1′, . . . , x′)φN ((x+ 1)′, . . . , A′)
(10)

with φα and φN as the part functions for the α-like and
unclustered nucleonic configurations, respectively, and in-
tegrating over Rα, one can write eq. (9) in the form

U (R) =

(
φα (1′, . . . , x′)φN

(
(1 + x)′, . . . , A′),

[ x∑
i=1

Vαα (|R − ri|) +
A∑

j=x+1

VαN (|R − rj |)
]

×φα (1′, . . . , x′)φN

(
(1 + x)′ , . . . , A′)). (11)
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Here Vαα and VαN denote, respectively, the interaction
potentials of the projectile with the α-like clusters and
unclustered nucleons in the target.

If one denotes the density-distributions of the α-like
clusters and unclustered nucleons in the target by ρα and
ρN , respectively, one can write eq. (11) in the form

U(R) =
∫
ρα (rα)Vαα (|R − rα|) d3rα

+
∫
ρN (rN )VαN (|R − rN |) d3rN . (12)

We note that, although the Buck potential [25] has
customarily been used, this potential is determined from
the low-energy α-α scattering data and not from the data
at the energies considered herein. Similarly, Ali-Bodmer �-
dependent potential [26] deals with the α-scattering data
up to about 23 MeV, which is well below the energy range
studied herein. Adopting the basic premise of Ali and Bod-
mer that the non-locality in the α-α potential effectively
introduces a short-range repulsion, we add such a part
to the Buck potential at shorter range but keeping the
latter potential intact at the longer range. For the α-N
interaction potential, we take the simple Gaussian form,
suggested in the review article of Ali et al. [27] on the
basis of the work of Sack et al. [28]. Sack et al. obtained
the parameters of the interaction from the fits to the p 1

2

and p 3
2
phase-shifts up to Ep = 10 MeV (lab). This corre-

sponds to the maximum α-energy of 40 MeV (lab), which
is again well below the higher energies considered herein.
The repulsive potential noted above is expected to take
care of the data at higher energies.

Equation (12), which is used to generate our folded
potential U(R), comprises the following assumptions:
i) The target nucleons are considered to be in the α-like
cluster configuration for most of the time and in the un-
clustered nucleonic configuration for the rest of the time
with the coexistence of these two configurations.
ii) Although the α-like clusters are transient giving rise
to continual changes of position coordinates of the clus-
ters and the nucleons in the target, the folded potentials
convoluted from their density distributions are constant
in time.

The density functions are considered here to be of both
the following two forms, as suggested by Buck et al. [29]:
The first one has a modified Gaussian shape [6,29]
given by

ρi(r) = ρG
0i

(
1 + wGr

2
)
exp

(−βir
2
)

with i = α, N .
(13)

The second one is a 3-point Fermi distribution [30]
given by

ρi(r) = ρF
0i

(
1 + wF

r2

c2i

) [
1 + exp

(
r−ci

ai

)]−1

(14)

with i = α, N .

If one interprets that the nucleus is composed of 4Aα nu-
cleons making Aα α-like clusters and AN unclustered nu-

cleons, then one can write the normalization integral as∫
ρα (rα) d3rα +

∫
ρN (rN ) d3rN = 4Aα +AN = AT .

(15)
If the values of the parameters in the density distributions
ρα (rα) and ρN (rN ) are such that the integral value AT in
(15) is different from the target mass number A, then one
may define the renormalization factor Nr [3–16], which
has been found to be energy dependent, as

AT (E) = Nr (E)A. (16)

Following the assumption of our model including
the basic premise of [26], the α-α potential can be
parametrized as

Vαα(r) = VR exp
(−µ2

Rr
2
) − VA exp

(−µ2
Ar

2
)
. (17)

In eq. (17), VR and VA are the repulsive and attractive
parts of the potential with the range parameters µR and
µA, respectively. The �-independence of the repulsive part
is considered for the sake of simplicity of the potential.

For the α-N potential, the following form [27] has been
used:

VαN (r) = −V0 exp
(−K2r2

)
, (18)

with K as the range parameter.
For the imaginary part of the α-nucleus potential the

phenomenological Gaussian form,

W (R) = −W0 exp
(
− R2

R2
W

)
, (19)

has been assumed. The Coulomb potential VC of a uni-
formly charged sphere with radius RC = rCA

1/3,

VC(r) =
[

Z1Z2e2

2RC

] [
3− r2

R2
C

]
for r ≤ RC

= Z1Z2e2

r for r > RC, (20)

is added to obtain the total α-nucleus potential.

3 Analysis

Analyses have been carried out using the optical model
code SCAT2 [31] coupled with the χ2-minimization code
MINUIT [32]. The code SCAT2 has been modified to ac-
commodate the folding calculations. In the analyses, the
parameter values VA = 122.62 MeV and µA = 0.469 fm−1

in eq. (17), taken from Buck et al. [25], and V0 = 47.3 MeV
andK = 0.435 fm−1 in eq. (18), taken from [28], have been
kept fixed. The Coulomb radius parameter has been set
to rC = 1.35 fm.

3.1 Analysis using the modified Gaussian distribution

In the first phase of the analysis, the modified Gaussian
density (MGD) ditribution in (13) with the parameter val-
ues wG = 0.467 and βα = βN = 0.292, taken from [29],
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Table 1. Energy-dependent parameters for folding potential using only the attractive part of α-α potential in the first step of
analysis with the modified Gaussian density distribution. Eα and W0 are in MeV, ρG

0α, in fm−3, and βα, in fm−2. JR/(4A) and
JI/(4A) are in MeVfm3.

First step with Gaussian distribution

Eα ρG
0α AT Nr W0 χ2 JR/(4A) JI/(4A)

25.4 0.0346 16.60 1.038 8.0 1296 392.2 28.8
26.6 0.0361 17.32 1.083 10.0 4368 409.2 35.9
30.0 0.0355 17.03 1.064 10.2 2307 402.4 36.7
32.2 0.0356 17.08 1.068 13.0 4245 404.5 46.7
39.3 0.0352 16.89 1.056 17.2 11957 399.0 61.8
40.4 0.0354 16.98 1.061 17.3 643 401.3 62.2
48.8 0.0359 17.22 1.076 18.5 19508 406.9 66.5
49.5 0.0359 17.22 1.076 22.0 1333 406.9 79.1
54.1 0.0358 17.18 1.074 24.0 1130 405.8 86.3
65.0 0.0320 17.35 0.959 30.5 1405 362.7 109.6
69.5 0.0345 16.56 1.035 30.6 437 391.1 110.0
80.7 0.0330 15.83 0.989 32.5 373 374.1 116.8
104.0 0.0305 14.63 0.914 33.5 898 345.7 120.4
146.0 0.0270 12.95 0.809 34.0 311 306.0 122.2

has been employed. ρG
0α and ρG

0N are treated as free param-
eters with the constraint that the integral value of AT in
(15) remains close to the number of nucleons A in the tar-
get. To elucidate the importance of contributions from the
α-N potential arising from the unclustered nucleons and
from the repulsive part of the α-α interaction, the analy-
ses have been performed in the following three steps:
i) In the first step, only the attractive part of the α-α
interaction has been employed to calculate the folded α-
nucleus potential.
ii) In the second step, the α-N potential has been added
to the α-α attractive potential for the calculation of the
folded potential.
iii) In the final stage, the full analysis has been made with
the folded potential arising from the attractive and repul-
sive parts of the α-α interaction, and the α-N potentials.

In the first step of the analysis with the MGD distri-
bution in (13), only the folding potential arising from the
attractive part of the α-α interaction potential has been
employed. Thus, ρG

0N has been set to zero, and ρG
0α and

the parameters W0 and RW of the imaginary part of the
α-16O potential in (19) have been adjusted to obtain the
best possible fit to the data at each of the incident ener-
gies. The RW = 3.55 fm value gives the best overall fit
to the data at all the energies. Table 1 shows the values
of ρG

0α, W0, AT and the renormalization factor Nr for the
best fits to the data at the different incident energies. The
volume integrals for the real and imaginary parts of the α-
nucleus potential, JR/(4A) and JI/(4A), respectively, are
also noted in table 1 for the different energies. The sum of
the χ2-values over all the incident energies is χ2

T = 50211.
The calculated cross-sections are compared to the data in
fig. 1 as dotted curves. The values of the renormalization
factor Nr are different from unity and are different for the
different energies. This is in line with the results obtained
in the previous studies including the one of Farid et al. [6].

In the second step of the analysis with the MGD dis-
tribution, the α-N interaction potential is added to the
α-α attractive potential (still keeping the repulsive α-α
potential depth, VR = 0.0) to derive the folded α-nucleus
potential. The values of ρG

0α, ρ
G
0N and βN (the density

parameters of the unclustered nucleons), and the param-
eters of the imaginary potential W0 and RW have been
adjusted to obtain the best overall fits to the data at all
the energies. The values of the energy-independent pa-
rameters are now ρG

0α = 0.0248 fm−3, ρG
0N = 0.254 fm−3,

βα = 0.292 fm−2, βN = 1.2 fm−2, wG = 0.467 fm−2. These
values yield 4Aα = 11.9, AN = 1.7 and AT = 13.6 to the
normalization integrals in (15) and lead to the renormal-
ization factor as Nr = 0.85 in (16). The volume integral
for the real part is now JR/(4A) = 358.2MeVfm3. Three
important points to be noted are:
i) The βN value has to be substantially increased (the ra-
dius of density distribution for the unclustered nucleons
decreased) to βN = 1.2 fm−2 to improve the fits.
ii) The renormalization factor Nr = 0.82, although differ-
ent from unity, does not change with the incident energy.
iii) The total χ2 is greatly reduced to χ2

T = 19433 from
the previous value 50211, obtained without the inclusion
of the α-N interaction in the folded potential.
The W0 and χ2 values at the different energies are given
in table 2. The fits are shown in fig. 1 in dashed curves.

In the final step of the analysis with the MGD distri-
bution, the repulsive part of the α-α potential has been
turned on. The depth VR and its range µR parameters
have been searched upon for the best overall fits. The
values of ρG

0α, ρ
G
0N and W0 have been tuned to achieve

further improvements in the fits. The final values of the
energy-independent parameters are ρG

0α = 0.0292 fm−3,
ρG
0N = 0.298 fm−3, βα = 0.292 fm−2, βN = 1.2 fm−2,
wG = 0.467 fm−2, RW = 3.45 fm and µR = 0.5 fm−1. The
parameters of the density distribution lead to 4Aα = 14.0,
AN = 2.0 and AT = 16.0.
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Fig. 1. Differential cross-sections for α+16O elastic scattering at different energies are compared to the predictions from folded
potentials using the modified Gaussian density distribution. The solid curves are calculations with the total contributions from
the α-α (attractive and repulsive) and α-N potentials, the dashed curves, with the contributions from the α-α attractive (but
without repulsive) and α-N potentials, and the dotted curves, with only the attractive part of the α-α potential. The data are
from [10,12,17–20].

The important points that emerge from this step are:
i) The addition of the repulsive α-α interaction improves
the fits to the data, particularly at the higher energies.
The total χ2 value reduces to χ2

T = 17085.
ii) The number of nucleons needed for the best fits is
AT = 16.0, 4Aα = 14.0 existing in α-like clusters and
the remaining AN = 2.0 in an unclustered form.
iii) The renormalization factor Nr is exactly unity and re-
mains so at all incident energies.
The values of the energy-dependent parameters W0, VR,
and the volume integrals JR/(4A) and JI/(4A) are listed
in table 2. The fits are displayed in fig. 1 in solid curves.
The root-mean-square (rms) radius for 16O, deduced from
the parameters of the density distribution, is obtained
as 〈r2〉 1

2 = 2.60 fm, which compares well with the value

∼ 2.7 fm quoted in Buck et al. [29] and de Vries et al. [30],
but disagrees with the value 3.4 fm that can be obtained
for 16O from eq. (16) of Farid et al. [6].

3.2 Analysis using the 3-point Fermi distribution

In the second phase, the analysis has been repeated us-
ing the 3-point Fermi density (3FD) distribution for the
α-like clusters and unclustered nucleons. The starting
parameters wF = −0.051, cα = cN = 2.608 fm and
aα = aN = 0.513 fm have been taken from de Vries et
al. [30]. The first step of the analysis has been performed
using only the α-α attractive potential. The data favor a
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Table 2. Energy-dependent parameters in the second (using the α-α attractive and α-N potentials) and final (using the full α-α
potential including the repulsive part and α-N potential) steps of the analysis with the modified Gaussian density-distribution.
Eα, VR and W0 are in MeV, and JR/(4A) and JI/(4A) are in MeVfm3.

Second step with Gaussian distribution Final step with Gaussian distribution

Eα W0 χ2 JR/(4A) JI/(4A) VR W0 χ2 JR/(4A) JI/(4A)

25.4 8.5 620 358.2 28.0 27.2 8.5 692 360.8 28.0
26.6 10.3 1415 34.0 28.0 10.4 1136 359.0 34.3
30.0 10.6 3110 35.0 31.6 10.5 3281 351.0 34.6
32.2 13.0 2857 42.9 31.7 13.2 2791 350.8 43.6
39.3 16.8 2593 55.4 31.8 16.4 2580 350.6 54.1
40.4 16.9 551 55.8 31.9 16.5 678 350.5 55.4
48.8 18.2 4228 60.0 32.0 17.5 3489 350.1 57.7
49.5 21.0 482 69.3 32.1 21.0 466 349.9 69.3
54.1 22.5 891 74.2 33.0 22.0 719 347.9 72.6
65.0 29.4 1005 97.0 37.4 27.9 724 338.9 92.0
69.5 29.5 307 97.3 37.5 28.0 202 337.9 92.4
80.7 34.0 381 112.2 47.0 28.9 147 316.7 95.4
104.0 42.0 635 138.6 61.0 29.7 102 285.5 98.0
146.0 48.0 358 158.4 78.0 30.2 81.3 247.6 99.6

Table 3. Energy-dependent parameters in the first (using only the attractive part of α-α potential), second (using the α-α
attractive and α-N potentials) and final (using the full α-α interaction including the repulsive part and α-N potential) steps of
the analysis with the 3-point Fermi density distribution. Eα, VR and W0 are in MeV, and JR/(4A) and JI/(4A) are in MeVfm3.

First step Second step Final step

Eα W0 χ2 W0 χ2 VR W0 χ2 JR/(4A) JI/(4A)

25.4 8.5 1051 8.5 808 32.8 8.6 739 348.4 27.2
26.6 10.2 1295 10.7 1228 32.9 10.5 1322 348.2 33.2
30.0 10.5 2046 11.0 2819 37.0 11.0 2962 339.0 34.7
32.2 13.0 1478 13.2 2296 37.1 13.2 3357 338.8 41.7
39.3 17.2 1918 17.2 915 37.2 16.8 1074 338.6 53.1
40.4 17.3 484 17.3 648 37.3 16.9 787 338.4 53.4
48.8 19.2 3456 18.2 2082 37.4 17.9 1203 338.2 56.5
49.5 22.0 452 21.0 278 37.5 21.3 232 337.9 67.3
54.1 24.0 970 23.5 807 39.0 22.5 578 334.6 71.1
65.0 32.9 830 31.0 732 45.0 28.5 494 321.3 90.0
69.5 33.0 2786 31.1 267 45.1 28.6 95.6 321.1 90.3
80.7 37.0 436 33.5 411 53.0 29.5 120 303.5 93.2
104.0 45.0 891 43.0 803 65.0 30.2 69.4 276.8 95.4
146.0 52.0 336 50.0 258 76.0 31.8 84.4 250.2 100.4

reduced value of diffuseness to aα = 0.430 fm. Satisfac-
tory fits to the data can be achieved with the parame-
ters ρF

0α = 0.0433 fm−3, cα = 2.608 fm, aα = 0.430 fm,
wF = −0.051 and RW = 3.35 fm. The fits to data using
the values of the energy-dependent parameterW0 and χ2-
values are shown in table 3, and displayed in fig. 2 as dot-
ted curves. The total χ2 value is χ2

T = 15922, which is even
lower than the best figure achieved with the MGD distri-
bution. The parameters of the density distribution yields
AT = 4Aα = 15.5, which leads to the energy-independent
renormalization factor Nr = 0.969. Thus, with the 3FD
distribution one can generate from only the attractive part
of α-α potential a folded potential, which does not need
renormalization at different energies. The energy indepen-

dence of the renormalization factor has not been achieved
using the MGD distribution in the first phase of our anal-
ysis.

In the second step, the effect of addition of the α-N
interaction without the inclusion of the repulsive poten-
tial to the α-α attractive potential is examined. RW , cα,
wF, aα and aN are kept unchanged, but the radius cN of
the density distribution for the unclustered nucleon has
to be reduced to obtain satisfactory fits to the data. The
values of the best-fit energy-independent parameters are
ρF
0α = 0.0363 fm−3, ρF

0N = 0.0820 fm−3, cα = 2.608 fm,
cN = 1.1 fm, aα = aN = 0.430, wF = −0.051 and
RW = 3.40 fm. The values of W0 and the χ2-values for
different energies are noted in table 3. The fits are shown
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Fig. 2. Same as in fig. 1, but for the 3-point Fermi density distribution.

in fig. 2 as broken curves. The total χ2 value reduces to
χ2

T = 14351, indicating that the fits are improved, in par-
ticular, to the data of lower incident energies, with the in-
clusion of the α-N potential. The normalization integrals
are now 4Aα = 13.0, AN = 1.0 and AT = 14.0. This cor-
responds to the value Nr = 0.875 for the renormalization
factor, which is again energy independent.

In the final step of the analysis with the 3FD distri-
bution, the repulsive part of α-α potential is added to the
α-α attractive and α-N interaction potentials. If the pa-
rameter values cα = 2.608 fm, aα = aN = 0.430 fm and
RW = 3.40 fm are left unchanged, the best overall fits to
the data over the entire 25.4–146.0 MeV incident-energy
range can be realized with the following conditions:
i) The central densities ρF

0α = 0.0391 fm−3 and ρF
0N =

0.164 fm−3 are needed.
ii) The radius of the unclustered nucleonic density distri-
bution, has to be cN = 1.1 fm, again much less than that

for the α-like distribution cα = 2.608 fm, as observed in
the second step of the analysis.
iii) The range parameter of the repulsive potential is
µR = 0.5 fm−1.
The values of the energy-dependent parameters VR and
W0, the volume integrals JR/(4A) and JI/(4A), and χ2

values are listed in table 3. The deduced values of the
normalization integrals in (15) are (again, as obtained in
the final analysis with the MGD distribution) 4Aα = 14.0,
AN = 2.0 and AT = 16.0, which gives the renormalization
factor as Nr = 1.0 and energy independent. The fits are
shown in fig. 2 in solid curves. The total χ2 value is further
reduced to χ2

T = 13118 with the inclusion of the repul-
sive potential, from 14351 obtained in the second phase
without the repulsive potential. The effect of the repul-
sive potential is particularly tangible in fits to the data
of higher energies. The overall fits, obtained with the 3FD
distribution, are better than those generated by the folded
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Table 4. Energy-independent parameters including those relating density distributions.

Parameter Modified Gaussian distribution Parameter 3-point Fermi distribution

First Second Final First Second Final
step step step step step step

VA (MeV) 122.62 122.62 122.62 VA (MeV) 122.62 122.62 122.62

µA (fm) 0.469 0.469 0.469 µA (fm) 0.469 0.469 0.469

µR (fm) 0.50 0.50 0.50 µR (fm) 0.50 0.50 0.50

V0 (MeV) 47.3 47.3 47.3 V0 (MeV) 47.3 47.3 47.3

K (fm−1) 0.435 0.435 0.435 K (fm−1) 0.435 0.435 0.435

RW (fm) 3.55 3.45 3.45 RW (fm) 3.35 3.40 3.40

ρG
0α (fm−3) ∗ 0.0248 0.0292 ρF

0α (fm−3) 0.0433 0.0363 0.0391

ρG
0N (fm−3) 0.0 0.2540 0.2980 ρF

0N (fm−3) 0.0 0.0820 0.1640

βα (fm−2) 0.292 0.292 0.292 cα (fm) 2.608 2.608 2.608

βN (fm−2) – 1.2 1.2 cN (fm) – 1.1 1.1

– – – – aα (fm) 0.430 0.430 0.430

– – – – aN (fm) 0.430 0.430 0.430

wG (fm−2) 0.467 0.467 0.467 wF -0.051 -0.051 -0.051

4Aα
∗ 11.9 14.0 4Aα 15.5 13.0 14.0

AN 0.0 1.70 2.00 AN 0.0 1.0 2.0

AT
∗ 13.6 16.0 AT 15.5 14.0 16.0

Nr
∗ 0.650 1.0 Nr 0.969 0.875 1.0

χ2
T 50211 19433 17085 χ2

T 15992 14351 13118

∗ The values are energy dependent and given in table 1.

potential from the MGD distribution. The rms radius for
the density distributions is found as 〈r2〉 1

2 = 2.52 fm.
The values of the energy-independent parameters used

in three steps of the analysis with MGD and 3FD distribu-
tions, and the derived results are summarized in table 4.

4 Discussion and conclusions

The present work gives a simple prescription of a single-
folded potential, which provides a satisfactory account of
the data of the α-elastic scattering on 16O over a broad
range of incident energies, namely, 25.4–146.0 MeV. The
derived potential, in the present work, does not need any
renormalization for a satisfactory description of the data
over the entire energy range including six energy points at
25.4, 26.6, 30.0, 39.3, 49.5 and 69.5 MeV, not considered in
Farid et al. [6]. The number of energy-dependent parame-
ters in the present folded potential is just two, namely, the
depth parameters VR and W0, while that in the work of
Farid et al. [6] involves four energy-dependent parameters,
e.g., the renormalization factor, and three parameters of
imaginary potentials. The inclusion of the α-N interaction
to the α-α attractive potential, i.e. simultaneous consid-
eration of density distribution of α-like clusters and un-
clustered nucleons in 16O, removes the energy dependence
of the renormalization factor Nr, as in table 1, needed to
fit the data with only the α-α attractive potential for the
case of the MGD distribution, and improves the χ2

T -value
for the fits to the data (table 4) for both the density distri-

butions considered in the present work. The slow energy
dependence of the real part of the α-nucleus interaction
is contained in the repulsive part of the α-α interaction.
The addition of repulsive part decreases the χ2

T values fur-
ther for the overall fits, particularly at the larger incident
energies and its inclusion coupled with the consideration
of unclustered nucleons, yields the renormalization factor
to exactly Nr = 1.0 (table 4) for both the density dis-
tributions considered herein. The �-independent repulsive
part, used in the present work, is found to work well and
this aspect of the potential gives it a more usable form.
The addition of the repulsive part conforms to the Pauli
principle. The results of the present analysis suggest that
the repulsive part is expected to show up prominently in
the α-α elastic scattering at higher energies as well.

The inclusion of the supplementary folding potential
arising from the unclustered nucleons in the target nu-
cleus along with the α-α repulsive potential, in the present
work, solves the long-standing problem with renormaliza-
tion of the folded potential. Both the MGD and 3FD dis-
tributions give identical results, which are as follows:
i) Both the density distributions generate similar volume
integrals for the real and imaginary parts of the α-16O
interaction potential. JR/(4A) varies from 360.8MeVfm3

at 25.4 MeV to 247.6MeVfm3 (table 2) for the MGD
distribution, while the 3FD distribution gives the corre-
sponding values from 351.3 to 250.2MeVfm3 (table 3)
in the same range of energies. JI/(4A) varies from 28.0
to 99.6 MeVfm3 for the former distribution and 27.2 to
100.4MeVfm3 for the latter one.
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ii) Both the distributions generate the same number of
nucleons AT (table 4) forming the α-like clusters with
4Aα = 14.0 nucleons in them, and AN = 2.0 unclustered
nucleons in 16O in the time-averaged picture. All the nu-
cleons in the target participate in generating the folding
potential.
iii) The deduced values of the rms radius from the Gaus-
sian and Fermi distributions are, respectively, 〈r2〉 1

2 =
2.60 and 2.52 fm, which compare well with the quoted
value of∼ 2.7 fm in the literature [29,30]. The latter distri-
bution, however, generates better overall fits to the data.
iv) The calculations with both the density distributions
suggest that the radius of the unclustered nucleonic dis-
tribution is much less than that for the α-like clusters.
This is in conformity with the calculations of Brink and
Castro [2], Mueller and Clark [33] and Roepke [34] that
the α-particle formation is energetically favored in the re-
gion of nuclear surface.
The quality of fits to the angular distribution data at dif-
ferent incident energies suggests that the approximations
made in generating the folding potential are appropriate.
It is remarkable that the use of the observed density dis-
tribution in [30], which is a manifestation of the nucleonic
and other cluster-like configurations, can successfully ac-
count for the α-16O elastic scattering over a wide range
of energies without any need to renormalize the folded
potential, generated from the distribution with a simple
prescription suggested herein. The folding model, used in
the present work, is expected to work for any non-α cluster
nucleus and demands further attention. It remains to be
seen whether the cluster formalism can describe a whole
range of phenomena in a unified way, as observed by Hodg-
son [35].
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